This website collects cookies to deliver better user experience. Cookie Policy
Accept
Sign In
The Wall Street Publication
  • Home
  • Trending
  • U.S
  • World
  • Politics
  • Business
    • Business
    • Economy
    • Real Estate
    • Markets
    • Personal Finance
  • Tech
  • Lifestyle
    • Lifestyle
    • Style
    • Arts
  • Health
  • Sports
  • Entertainment
Reading: AI-Driven Parsing for Logistics: Automating Freight Data Processing
Share
The Wall Street PublicationThe Wall Street Publication
Font ResizerAa
Search
  • Home
  • Trending
  • U.S
  • World
  • Politics
  • Business
    • Business
    • Economy
    • Real Estate
    • Markets
    • Personal Finance
  • Tech
  • Lifestyle
    • Lifestyle
    • Style
    • Arts
  • Health
  • Sports
  • Entertainment
Have an existing account? Sign In
Follow US
© 2024 The Wall Street Publication. All Rights Reserved.
The Wall Street Publication > Blog > Tech > AI-Driven Parsing for Logistics: Automating Freight Data Processing
TechTrending

AI-Driven Parsing for Logistics: Automating Freight Data Processing

Editorial Board Published February 22, 2025
Share
AI-Driven Parsing for Logistics: Automating Freight Data Processing
SHARE

Abstract

The logistics and transportation industry generates vast amounts of structured and unstructured data, requiring automated tools for efficient processing. Traditional parsing methods struggle  with scalability, content variability, and format inconsistencies across freight documents, shipment orders, invoices, and real-time tracking data. This article introduces a network-based content parsing system developed by Igor Fedyak, designed to receive, parse, and manage large-scale logistics and transportation data using configurable templates and distributed parsing devices. The system employs a management server to dynamically allocate parsing tasks, ensuring high-speed data extraction, improved accuracy, and seamless integration with freight management systems (FMS), transportation management systems (TMS), and enterprise resource planning (ERP) software. The proposed methodology enables automated freight data processing, dynamic route optimization, and real-time  load tracking, revolutionizing data management for logistics and transportation companies.

Contents
Abstract1.   Introduction2. System Architecture2.1  Overview2.2  Management Server2.3  Parsing Devices3.   Parsing Process and Workflow3.1  Content Reception and Filtering3.2  Parsing Assignment and Load Balancing3.3  AI-Driven Template Matching3.4  Integration with Logistics Software4.   Key Features and Advantages4.1  Real-Time Load Processing4.2  Automated Document Recognition4.3  Carrier and Route Optimization4.4  API Connectivity to TMS and ERP4.5  High Accuracy and Scalability5.   Experimental Results and Performance Evaluation6.   Future Directions7.   ConclusionReferencesAcknowledgments

1.   Introduction

The logistics and transportation sector relies heavily on real-time data processing for freight tracking, carrier management, load booking, and shipment processing. Manual data entry and traditional parsing techniques create inefficiencies, leading to delays, errors, and increased operational costs.

A major challenge in logistics is data fragmentation, where freight data arrives in diverse formats, such as:

  • Emails containing load requests
  • PDF invoices and shipment documents
  • Electronic Bill of Lading (eBOL) records
  • GPS-based real-time tracking feeds

This paper presents a scalable, networked parsing system developed by Igor Fedyak, specifically designed for logistics and transportation automation. The system leverages distributed parsing devices, AI-driven template matching, and real-time data synchronization, enabling logistics companies to process high volumes of freight data efficiently.

2. System Architecture

2.1  Overview

The proposed logistics-focused content parsing system consists of:

  • A management server that assigns parsing tasks and distributes workloads based on freight data volume.
  • A network of parsing devices that process load documents, extract shipment details, and format structured outputs.
  • AI-driven templates to recognize freight documents (eBOLs, invoices, load sheets, customs paperwork).
  • Real-time data synchronization with TMS, FMS, and ERP systems.

2.2  Management Server

The management server acts as the central control unit, handling:

  • Freight document ingestion from emails, TMS, or APIs.
  • Parsing assignment creation, distributing workloads based on device capacity.
  • Communication with parsing devices, ensuring efficient processing and real-time updates.

2.3  Parsing Devices

Each parsing device is responsible for:

  • Extracting structured freight data from unstructured sources (emails, scanned documents, XML files).
  • Applying AI-driven parsing rules to standardize load details.
  • Synchronizing data with dispatch systems, improving load matching and carrier selection.

3.   Parsing Process and Workflow

3.1  Content Reception and Filtering

  • Incoming freight data (eBOLs, invoices, load requests) is filtered and categorized by the management server.
  • Parsing rules and AI-driven templates extract key data fields, such as:
    • Load ID, pickup location, delivery location, carrier details
    • Freight weight, commodity type, special handling instructions
  • Estimated time of arrival (ETA), transit time, and route recommendations

3.2  Parsing Assignment and Load Balancing

  • The management server assigns parsing tasks to available devices based on:
    • Document complexity (e.g., structured vs. unstructured load requests)
    • Real-time freight volume
    • Carrier and shipper priority processing
  • Dynamic load balancing ensures:
    • Faster processing times for high-priority loads.
  • Efficient document parsing across multiple transportation hubs.

3.3  AI-Driven Template Matching

  • The system uses AI-trained templates to identify, classify, and process logistics documents.
  • Parsing devices recognize:
    • eBOL document layouts for different carrier
    • Customs documentation requirements
    • Invoice structures for financial reconciliation

3.4  Integration with Logistics Software

  • Parsed freight data is automatically synced with:
    • Transportation Management Systems (TMS) for real-time tracking.
    • Freight Marketplaces for automated carrier selection and rate optimization
    • Load Matching Platforms to identify available trucks.

4.   Key Features and Advantages

4.1  Real-Time Load Processing

  • The system processes freight requests in milliseconds, reducing manual entry delays.

4.2  Automated Document Recognition

  • AI-driven parsing extracts load details from emails, XML files, and scanned BOLs.

4.3  Carrier and Route Optimization

  • Parsed load data is used for automated dispatching, ensuring optimal carrier selection.

4.4  API Connectivity to TMS and ERP

  • The system integrates seamlessly with TMS, FMS, and financial software, automating invoicing and freight payments.

4.5  High Accuracy and Scalability

  • AI-based template learning improves parsing accuracy, reducing errors in freight invoices, BOLs, and customs forms.

5.   Experimental Results and Performance Evaluation

A performance evaluation was conducted using real-world logistics datasets, including eBOLs, invoices, and shipment records.

MetricTraditional ParsingProposed Parsing System
Parsing Speed (pages/sec)  20 pages/sec  150 pages/sec
Accuracy (%)  85%  98%
Integration with TMS  Limited  Full API Integration
Load Matching Speed  Slow  Real-time Matching

The proposed system processed freight data 7.5x faster than traditional methods.

  • Parsing accuracy improved by 13%, reducing errors in load assignments.
  • Automated carrier matching improved dispatch efficiency, reducing empty miles by 20%.

6.   Future Directions

Future improvements include:

  • AI-Powered Predictive Routing: Optimizing load scheduling based on real-time traffic and weather conditions.
  • Blockchain Integration: Secure document validation for customs and freight auditing.
  • Multilingual Document Parsing: Supporting global logistics operations with OCR-based translation.

7.   Conclusion

The logistics and transportation industry relies on real-time data processing for freight matching, load tracking, and route optimization. The network-based parsing system developed by Igor Fedyak introduces a highly scalable, AI-driven approach to automated freight document processing. By leveraging distributed parsing devices, real-time template matching, and API-based integrations, logistics companies can automate workflows, reduce errors, and improve operational efficiency. This system provides a transformative solution for freight carriers, shippers, and 3PL providers, paving the way for a fully automated logistics ecosystem.

References

  1. Fedyak, Igor. (2019). System and Method for Content Parsing (Patent No. 10911570).
  2. Additional peer-reviewed sources on logistics automation and AI-driven parsing.

Acknowledgments

This work is based on U.S. Patent No. 10911570, which presents an innovative approach to network-based content parsing in logistics and transportation. Special thanks to Igor Fedyak for contributions to the advancement of automated freight processing technologies.

https://www.linkedin.com/in/ifedyak

Share This Article
Twitter Email Copy Link Print
Previous Article Armed theft suspect shot, killed by Harmony liquor retailer worker Armed theft suspect shot, killed by Harmony liquor retailer worker
Next Article GOP praises Trump—after they aren’t sidestepping his insane habits GOP praises Trump—after they aren’t sidestepping his insane habits

Editor's Pick

Brooke Hogan Written Out of Hulk’s Will (At Her Personal Request)

Brooke Hogan Written Out of Hulk’s Will (At Her Personal Request)

Studying Time: 3 minutes Brooke Hogan isn’t in her dad’s will, a brand new report reveals. Regardless of years of…

By Editorial Board 4 Min Read
6 Greatest Underwear To Stop Chafing For Males in 2025 | Fashion
6 Greatest Underwear To Stop Chafing For Males in 2025 | Fashion

We independently consider all really helpful services. Any services or products put…

15 Min Read
9 Finest Males’s Shorts Manufacturers – Versatile Types For 2025 | Fashion
9 Finest Males’s Shorts Manufacturers – Versatile Types For 2025 | Fashion

We independently consider all advisable services. Any services or products put ahead…

13 Min Read

Oponion

Jimmy Fallon Divorce Rumors: The Fact About His Marriage

Jimmy Fallon Divorce Rumors: The Fact About His Marriage

Studying Time: 4 minutes Is Jimmy Fallon headed for a…

May 12, 2025

This E book Remodeled My View of Ambition—And Helped Me Discover Which means Past My Profession

Like many ladies, I’ve at all…

October 5, 2024

The very best 2025 solo holidays, from Italy’s Dolomites to St. Lucia’s spas

Have second ideas about touring alone?…

July 17, 2025

Discover The Good Present For Each Man in Your Life With Mad Viking | Fashion

We independently consider all really helpful…

July 14, 2025

watch Warriors-Timberwolves Sport 2

Up 1-0 of their second-round playoff…

May 8, 2025

You Might Also Like

The Nintendo Change 2’s Largest Downside Is Already Storage
Tech

The Nintendo Change 2’s Largest Downside Is Already Storage

The Nintendo Change 2 is unbelievable—already a contender for the most important gaming {hardware} launch of 2025. I am nonetheless…

4 Min Read
Clear Your Mattress No Matter How Gross It Will get
Tech

Clear Your Mattress No Matter How Gross It Will get

It’s essential to know easy methods to clear your mattress. Not only for day-to-day cleanliness and hygiene, however let’s say…

4 Min Read
Preserve an Eye on Your Residence With Our Favourite Out of doors Safety Cameras
Tech

Preserve an Eye on Your Residence With Our Favourite Out of doors Safety Cameras

Evaluate These Safety CamerasBest MicroSD Playing cards{Photograph}: AmazonSome safety cameras help native storage, enabling you to file movies on the…

41 Min Read
Hold Tabs on Your Pets and Youngsters With the Finest Indoor Safety Cameras
Tech

Hold Tabs on Your Pets and Youngsters With the Finest Indoor Safety Cameras

Examine Indoor CamerasBest MicroSD Playing cards{Photograph}: AmazonMany safety cameras assist native storage, enabling you to document movies on the digicam…

21 Min Read
The Wall Street Publication

About Us

The Wall Street Publication, a distinguished part of the Enspirers News Group, stands as a beacon of excellence in journalism. Committed to delivering unfiltered global news, we pride ourselves on our trusted coverage of Politics, Business, Technology, and more.

Company

  • About Us
  • Newsroom Policies & Standards
  • Diversity & Inclusion
  • Careers
  • Media & Community Relations
  • WP Creative Group
  • Accessibility Statement

Contact

  • Contact Us
  • Contact Customer Care
  • Advertise
  • Licensing & Syndication
  • Request a Correction
  • Contact the Newsroom
  • Send a News Tip
  • Report a Vulnerability

Term of Use

  • Digital Products Terms of Sale
  • Terms of Service
  • Privacy Policy
  • Cookie Settings
  • Submissions & Discussion Policy
  • RSS Terms of Service
  • Ad Choices

© 2024 The Wall Street Publication. All Rights Reserved.

Welcome Back!

Sign in to your account

Lost your password?